Spectral stability and time evolution of N-solitons in KdV hierarchy

نویسندگان

  • Yuji Kodama
  • Dmitry Pelinovsky
چکیده

This paper concerns spectral stability and time evolution of N -solitons in the KdV hierarchy with mixed commuting time flows. Spectral stability problem is analyzed by using a pair of self-adjoint operators with finite numbers of negative eigenvalues. We show that the absence of unstable eigenvalues in the stability problem is related to the absence of negative eigenvalues of these operators in the constrained function spaces. Time evolution of N -solitons is uniquely characterized from the inverse scattering transform technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new criterion for the existence of KdV solitons in ferromagnets

The long-time evolution of the KdV-type solitons propagating in ferromagnetic materials is considered trough a multi-time formalism, it is governed by all equations of the KdV Hierarchy. The scaling coefficients of the higher order time variables are explicitly computed in terms of the physical parameters, showing that the KdV asymptotic is valid only when the angle between the propagation dire...

متن کامل

Asymptotic Stability for Kdv Solitons in Weighted H Spaces

In this work, we consider the stability of solitons for the KdV equation below the energy space, using spatially-exponentiallyweighted norms. Using a combination of the I-method and spectral analysis following Pego and Weinstein, we are able to show that, in the exponentially weighted space, the perturbation of a soliton decays exponentially for arbitrarily long times. The finite time restricti...

متن کامل

Effect of Relative Phase on the Stability of Temporal Bright Solitons in a PT- Symmetric NLDC

In this paper we numerically investigate the effect of relative phase on thestability of temporal bright solitons in a Nano PT- Symmetric nonlinear directionalcoupler (NLDC) by considering gain in bar and loss in cross. We also study the effect ofrelative phase on the output perturbed bright solitons energies, in the range of   0 to 180 . By using perturbation theory three eigenfunctions an...

متن کامل

Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations

We prove in this paper the stability and asymptotic stability in H of a decoupled sum of N solitons for the subcritical generalized KdV equations ut + (uxx + u )x = 0 (1 < p < 5). The proof of the stability result is based on energy arguments and monotonicity of local L norm. Note that the result is new even for p = 2 (the KdV equation). The asymptotic stability result then follows directly fro...

متن کامل

The KdV hierarchy and the propagation of solitons on very long distances

The Korteweg-de Vries (KdV) equation is first derived from a general system of partial differential equations. An analysis of the linearized KdV equation satisfied by the higher order amplitudes shows that the secular-producing terms in this equation are the derivatives of the conserved densities of KdV. Using the multi-time formalism, we prove that the propagation on very long distances is gov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008